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Somatic mutations acquired in healthy tissues as we age are major determinants of cancer risk. Whether
variants confer a fitness advantage or rise to detectable frequencies by chance remains largely unknown.
Blood sequencing data from ~50,000 individuals reveal how mutation, genetic drift, and fitness
shape the genetic diversity of healthy blood (clonal hematopoiesis). We show that positive selection,
not drift, is the major force shaping clonal hematopoiesis, provide bounds on the number of hematopoietic
stem cells, and quantify the fitness advantages of key pathogenic variants, at single-nucleotide
resolution, as well as the distribution of fitness effects (fitness landscape) within commonly mutated
driver genes. These data are consistent with clonal hematopoiesis being driven by a continuing risk
of mutations and clonal expansions that become increasingly detectable with age.

A
s we age, physiologically healthy tissues
such as skin (1, 2), colon (3, 4), esophagus
(5, 6), and blood (7–18) acquire muta-
tions in cancer-associated genes. In blood,
this phenomenon, termed clonal hema-

topoiesis (CH), increases in prevalence with
age (7–18), becoming almost ubiquitous in
those over the age of 65 (10, 15). The majority
of CHmutations are thought to arise in hema-
topoietic stem cells (HSCs) (10, 19) and typi-
cally fall within the genes DNMT3A, TET2,
ASXL1, JAK2, and TP53 and spliceosome genes,
although chromosomal alterations are also ob-
served (17). Because CH is associated with an
increased risk of blood cancers (7, 8, 19) and
the genes affected are commonly mutated
in preleukemic stem cells (20–24), CH has
emerged as an important precancerous state,
for which a quantitative understanding would
accelerate risk stratification and improve our
understanding of normal hematopoiesis.
The risk of progressing to a blood cancer

depends on the gene in which a variant falls
(14, 18). However, our ability to stratify specific
variants and their relative risk remains crude.
If variants confer a fitness advantage to HSCs,
they are more likely to expand over time. Fur-
thermore, higher variant allele frequencies
(VAFs) are predictors of acute myeloid leuke-
mia (AML) development (14, 18). It stands to
reason, therefore, that by analyzing the spec-
trum of VAFs, one might be able to infer the
fitness advantage conferred by specific var-
iants from a static “snapshot.” This would en-
able us to generate a comprehensive map

between specific variants and their fitness
consequences, allowing risk to be stratified
with greater resolution.
A major challenge to using VAFs to risk

stratify variants is that the spectrum of VAFs,
even at the level of a specific variant, is con-
siderably broad (10). Whether these differ-
ences in VAFs are a result of cell-intrinsic
fitness advantages (25), cell-extrinsic perturba-
tions (26), or sheer chance (13) remains un-
clear. To identify the most highly fit variants,
we first need to understand how mutation,
genetic drift, and differences in fitness (selec-
tion) combine to produce the spectrum of
VAFs observed in CH.

Results
The VAF distribution from ~50,000 individuals

Insights from evolutionary theory were ap-
plied to the VAF spectra of somatic mutations
detected in the blood from ~50,000 blood
cancer–free individuals from nine publicly
available blood sequencing datasets (7–15) [see
(27)] to tease apart the effects of mutation,
drift, and selection. Using single blood sam-
ple snapshots, we quantified the fitness ad-
vantages of key pathogenic single-nucleotide
variants (SNVs) as well as the spectrum of
fitness effects (fitness landscape) of the most
commonly mutated driver genes. VAF meas-
urements in bone marrow and peripheral
blood show good concordance (28), so periph-
eral blood VAF measurements are used as a
proxy to reflect clonal composition at the level
of the bonemarrowHSCs. The nine studies we
analyzed varied in their number of partici-
pants and sequencing depth (Fig. 1A). Most
large-scale studies were limited by standard
sequencing error rates and were only able
to detect VAFs >3% (7, 8), whereas smaller
studies, which used error-correcting tech-
niques, were able to detect VAFs as low as
0.03% (10, 12, 15). VAFs varied by more than
three orders of magnitude across individuals

even within the same gene, as exemplified by
DNMT3A, the most commonly mutated CH
gene (Fig. 1B). The distribution of variants
was strongly skewed to low VAFs. Variants
were observed far more frequently at certain
sites [e.g., DNMT3A R882 (Arg882) hotspot
codon; red data in Fig. 1B] and were almost
exclusively putatively functional (nonsynon-
ymous and frameshifts); synonymous variants
were rare and restricted to low VAFs.

A branching model of stem cell dynamics

To reveal the relative contributions of genetic
drift, mutation rate differences, and cell-intrinsic
fitness effects on the observed variation in
VAFs, we considered a simple stochastic
branching model of HSC dynamics built on
classic population genetic models (29–33),
adapted to include a spectrum of ages and fit-
ness effects [see (27)]. The model is of an HSC
population of N diploid cells that stochasti-
cally self-renew or differentiate symmetrically
or asymmetrically (Fig. 1C) and describes a
variety of biologically plausible scenarios, in-
cluding HSCs occupying a fixed number of
spatially constrained niches [see (27)]. Muta-
tions are acquired stochastically at a constant
rate m per year. The fate of a new mutation
depends on its influence on stochastic cell fate
decisions through a fitness effect, s, which is
the average growth rate per year of that var-
iant relative to the average growth rate of
normal HSCs. Neutral mutations (s = 0) do
not alter the balance between self-renewal and
differentiation, which both occur at rate 1/t.
Thus, neutral mutations usually rapidly go
extinct or, owing to random fluctuations, grow
slowly and remain at low VAFs (orange tra-
jectories in Fig. 1D). Beneficial mutations (s > 0)
increase the rate of self-renewal relative to
symmetric differentiation and, provided they
escape stochastic extinction, eventually grow
exponentially at rate s per year (red and blue
trajectories in Fig. 1D). This relative increase
in the rate of self-renewal can be achieved by
biasing cell fates alone [increasing the prob-
ability of self-renewal (34) (red plus sign in
Fig. 1C) or decreasing differentiation or apop-
tosis (35) (red minus sign in Fig. 1C)] or by a
combination of cell fate bias and an increase
in division rate.
Variants with a high fitness effect or those

acquired early in life are expected to reach
high VAFs (trajectories labeled 1 and 2 in
Fig. 1D), whereas variants with a low fitness
effect or those acquired late in life are re-
stricted to low VAFs (trajectories labeled 3
and 4 in Fig. 1D). This variation in both the
age acquired and fitness effect of variants
produces a characteristic spectrum of VAFs
that can be measured in a single blood sample
(insets of Fig. 1D). How these distributions
change with age (t) is determined by the fit-
ness effect of variants (s), their mutation rate
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Fig. 1. A branching model of HSC dynamics explains the observed VAF
distribution for variants in healthy blood. (A) Studies used in this analysis
varied in the number of participants (indicated by relative circle size) and reported
VAF detection thresholds. (B) The density of variants in DNMT3A varies widely
by VAF (>3 logs) and position in the gene. (C) A branching model of HSC dynamics.
Mutations with a positive fitness effect (red star) cause an imbalance in stochastic
cell fates toward self-renewal. This can be an increase in the rate of self-
renewal (red plus sign), a decrease in differentiation or apoptosis (red minus sign),
or a combination of the two, resulting in clonal expansions. (D) Simulations of
HSC populations under a branching model show how differences in fitness effect
and age produce VAF spectra (insets) in close agreement with observed data

[shown in (E)]. The vertical dashed lines indicate the timings of the blood samples
that produce the VAF spectra shown in the insets. The numbered features are
explained in the main text. The red dots labeled 5 and 6 highlight where the
red trajectories cross the vertical dashed line. (E) Plotting all VAF measurements
of DNMT3A variants as log-binned histograms normalized by mutation rates
(data points) demonstrates the consistency with the theoretical predictions
of the branching model (lines). The theoretical predictions account for a
distribution of ages in the studies. The density of high-frequency synonymous
variants is consistent with the predicted density of genetic hitchhikers and early
developmental mutations [dashed orange line; see (27)]. Error bars represent
sampling noise.
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(m), the population size of HSCs (N), and the
time (t) in years between successive symmetric
cell differentiation divisions according to the
following expression for the probability den-
sity as a function of l = log(VAF) [full deriva-
tion in (27)]:

ρðlÞ ¼ θexp −
el

f

� �
ð1Þ

where l = log(VAF), θ = 2Nτm, and f ¼ est−1
2Nτs.

To develop an intuition for the two key fea-
tures of this distribution, consider variants
with a fitness advantage entering the HSC
population uniformly at a rate q/t per year
and growing exponentially. The exponential
growthmeans that variant trajectories, plotted
ona log-VAF scale, are uniformly spaced straight
lines (red dots labeled 5 in Fig. 1D), producing
a flat density with y intercept of q. Dividing
the density of variants by the mutation rate
(measured per year), the y intercept therefore
provides an estimate for Nt [insets of Fig. 1D,
(27)]. Because the age of the oldest surviving
variant cannot exceed the age of the individ-
ual, there is a characteristic maximum VAF,
f, a variant can reach, which increases with
fitness effect, s, and age, t. To reach VAFs >f
requires a variant to both occur early in life
and stochastically drift to high frequencies,
which is unlikely. Therefore, the density falls
off exponentially for VAFs >f (red dots labeled

6 in Fig. 1D). The sharp density falloff at 50%
VAF occurs because even a variant that is
present in a very large proportion of total HSCs
will tend toward 50% VAF because the cells
are diploid.

HSC numbers and division times

To infer HSCnumbers and test the predictions
of ourmodel, we plotted log-VAF distributions
for SNVs from all the studies (7–15) [see (27)].
Studies differed in their number of partici-
pants as well as their panel size, both of which
affect the number of variants detected. There-
fore, to combine the data from all the studies,
we normalized the number of observed var-
iants by their study size and total study-
specific mutation rate (for variant or gene of
interest), controlling for trinucleotide contexts
of mutations [see (27)]. For a given specific
position in the genome, mutation rates are
low enough that, over a human life span, clones
acquiring multiple driver mutations are rare
and thus variants can uniquely mark clones
[see (27)].
We first focused on mutations in the gene

DNMT3A (Fig. 1E). The most commonly ob-
served variant in DNMT3A is the missense
variant R882H (Arg882→His; red data in Fig.
1E). Because fitness effects are expected to be
variant-specific (36), all R882H variants should
confer the same fitness effect and so serve as a

useful check on the model. Consistent with
our predictions, the density of R882H variants
is flat over almost the entire frequency range
(VAFs <15%) with a y intercept of Nt ≈
100,000 ± 30,000 years (figs. S9 and S11).
Encouragingly, this number is in agreement
with that inferred from single HSC phyloge-
nies (37). It is important to note that popula-
tion genetic analyses can only reliably infer
the combinationNt and notN or t separately.
Early developmental mutations indicate that
HSCs accrue ≈1.2 mutations per cell division
(37), which, combined with an HSCmutation
rate in adulthood of ≈16 per cell per year (37),
suggests that HSCs divide ≈13 times per year.
Although symmetric divisions are harder to
estimate, this provides an upper bound on the
number of HSCs, suggesting that <1.3 million
HSCs maintain the peripheral blood. Because
t < 1/smax [see (27)], the maximum inferred
s ≈ 25% suggests that t < 4 years, providing a
lower bound of 25,000 on the number of HSCs.
To validate our estimates for Nt, we turned

to the distribution of all synonymous variants
(orange data in Fig. 1E). Because synonymous
variants are generally expected to be function-
ally neutral, the characteristic VAF of the big-
gest synonymous variants (f) increases only
linearly with age because it is driven by drift
alone (see Eq. 1), and Nt is the time it would
take for a neutral mutation to drift to fixation
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Fig. 2. The fitness landscape of CH variants and genes. (A) Inferred fitness
effects and mutation rates for the top 20 most commonly observed CH variants.
Error bars represent 95% confidence intervals. Purple vertical lines indicate site-
specific mutation rates inferred from trinucleotide context [see (27)]. (B) The
distribution of fitness effects of nonsynonymous variants in key CH driver genes,
inferred by fitting a stretched exponential distribution and dividing this into three

fitness classes (low, moderate, and high) [see (27)]. These distributions reveal
many low-fitness and few high-fitness variants. Over a human life span, variants
with fitness effects <4% expand only a modest factor more than a neutral variant
(low fitness), variants with fitness effects of 4 to 10% per year expand by
substantial factors (moderate fitness), and variants with fitness effects >10% per
year can expand enough to overwhelm the marrow (high fitness).
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by chance. The synonymous variants provide a
crucial validation of the model because it pre-
dicts that themajority of synonymous variants
shouldbe foundat very lowVAFs.Quantitatively,
if our inferred value of Nt ≈ 100,000 years from
DNMT3A R882H variants is correct, it would
predict that the majority of synonymous mu-
tations should be restricted to VAFs below f =
t/2Nt ≈ 0.025% at age 50. This prediction
broadly agrees with the data, where themaxi-
mum likelihood inferred f ≈ 0.03 ± 0.005%
[see (27)]. This internal consistency check
indicates that both synonymous andDNMT3A
R882H variants point toward similar values
of Nt. Synonymous variants with VAFs >>f
are rare (orange dashed line in Fig. 1E) and
are consistent with having hitchhiked to high
frequencies on the back of an expanding clone
that had already acquired a fit variant [see
(27)], although it is also possible that a handful
are developmental in origin; have a functional
consequence themselves, for example, owing
to codon usage bias; or are in fact nonsynon-
ymous in an alternatively spliced transcript.

The fitness landscape of CH

Because the characteristic maximum VAF, f,
depends on the fitness effect, s, by estimating
f from the VAF spectrum, we can infer a var-
iant’s fitness. We illustrate this approach using
DNMT3A R882H variants. As predicted by the
model, the density of R882H variants does in-
deed begin to fall off exponentially for VAFs
>12% [red data in Fig. 1E; see (27)]. This sug-
gests that R882H variants provide HSCs with
a large selective advantage (s ≈ 15 ± 1% per
year) because, over the course of ≈55 years
(mean age across all studies), they have ex-
panded to VAFs ≈12%, although some have
reached VAFs as high as 50%.
To reveal the fitness landscape of other

highly fit and possibly pathogenic variants,
we applied this analysis to each of the 20 most
commonly observed variants across all studies
(Fig. 2A). Variants in the spliceosome genes
SF3B1 and SRSF2 are some of the fittest in
CH, with fitness effects as high as s ≈ 23% per
year, but are relatively rare owing to low mu-
tation rates. DNMT3A R882H is the most com-
mon CH variant, because it is both highly fit
and has a high mutation rate owing to its CpG
context. The DNMT3A R882C (Arg882→Cys)
variant is notably fitter than R882H (s ≈ 19 ±
1% versus s ≈ 15 ± 1% per year) but is observed
less frequently because of its lower mutation
rate [see (27)]. The potential of our analyses is
underscored by the GNB1 K57E (Lys57→Glu)
variant. Although this variant has received lit-
tle attention in CH, it is highly fit and strongly
associated with myeloid cancers and repre-
sents a potentially targetable variant (38).
To reveal the overall fitness landscapes of

key CH driver genes, we considered the VAF
distribution of all nonsynonymous variants in

each of the genes DNMT3A, TET2, ASXL1,
and TP53 (Fig. 2B). For DNMT3A, the density
of nonsynonymous variants at low VAFs is
broadly consistent with the same Nt ≈ 100,000
years inferred from R882H variants (blue data
in Fig. 1E). However, with increasing VAF, the
density of variants declines, consistent with a
spectrum of f and thus a spectrum of fitness
effects. Performing a maximum likelihood fit
to a family of stretched exponential distribu-
tions, we found that the spectrum of fitness
effects for nonsynonymous variants inDNMT3A
is very broad, with ≈40% of variants conferring
moderate to high fitness effects [s > 4% per
year, Fig. 2B; see (27)]. By contrast, the genes
TET2, ASXL1, and TP53 have a spectrum that is
more skewed toward low fitness effects, with
only ≈7 to 10% of all possible nonsynonymous
variants in these genes conferring moderate
or high fitness effects. These distributions high-
light that, in these CH genes, most nonsyn-
onymous variants have a low enough fitness
that they are effectively neutral, whereas an
important minority expand fast enough to
become pathogenic and overwhelm the mar-
row over a human life span.

Highly fit variants confer an increased risk of AML

We next asked whether high-fitness variants
confer an increased risk of AML development.
By considering the pre-AML and control sam-
ples from three studies (14, 15, 18), we found
that individuals harboring one or more of the
20 highly fit variants we identified (Fig. 2A) are
≈4-fold more likely to develop AML compared
with those harboring lower-fitness variants
[one-sided Fisher’s exact test, p< 10−5; see (27)].

Age dependence of CH
A key prediction of the model is that, because
variants enter the HSC population at a con-
stant rate, the apparent prevalence of a spe-
cific variant, at a defined sequencing sensitivity,
is predicted to increase roughly linearly with
age at rate 2Ntms [see (27)]. We confirmed this
prediction using DNMT3A R882H and R882C
variants, which, when combined, had enough
data to be broken down by age group (fig. S18).
In agreement with predictions, the age prev-
alence of these variants does increase linearly
with age, consistent with the age dependence
of CH being driven by the expansion of clones
that become more detectable in individuals of
older ages. The rate of this increase provides
an independent way to validate estimates of
fitness effects and, in this case, the rate of
increase is consistent with a fitness effect
of s ≈ 14% per year, which is in agreement with
estimates inferred from the VAF distribution
(Fig. 2A).
By inferring the spectrum of fitness effects

across 10 of the most commonly mutated CH
genes, we can predict how commonCHwill be
as a function of both age and sequencing sen-
sitivity [Fig. 3 and (27)].With sensitive-enough
sequencing (VAFs ≥0.01%), CH variants will
be detectable even in young adults and almost
ubiquitous in people aged over 50 years. Our
framework also enables us to predict the emer-
gence of clones harboring multiple driver
mutations. Although this depends on the co-
operativity between mutations, under the as-
sumption of additive fitness effects, we predict
that, at a VAF detection limit of 0.01%, <15% of
individuals aged 80 years will harbor clones
with two or more mutations within the same
cell [see (27)].

Discussion
A simple framework explains CH

Analyzing the VAF spectra from nine publicly
available clonal hematopoiesis datasets in light
of evolutionary theory points to a simple and
consistent picture of how HSC population dy-
namics shape the genetic diversity of blood.
The very wide variation in VAFs observed
among people can be largely explained by
the combined effects of chance (when a muta-
tion arises) and fitness differences (how fast
they expand). Our framework produces quan-
titative predictions for the number of HSCs,
the prevalence of CH across ages, and how the
number of somatic variants scale with VAF.
These predictions are in agreement with avail-
able data and, in the case ofHSCnumbers, have
been independently validated by an orthogonal
method (37).
Implicit to our analysis is the assumption

that many of the CH mutations drive cell-
intrinsic increases in fitness. However, fitness
is always context dependent, and therefore,
cell-extrinsic effects are likely crucial in some
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Fig. 3. Predicted prevalence of CH mutations
as a function of age for different detection
thresholds. Prevalence is predicted for individuals
to have acquired at least one variant within 10 of
the most commonly mutated CH genes (DNMT3A,
TET2, ASXL1, JAK2, TP53, CBL, SF3B1, SRSF2,
IDH2, and KRAS), taking into account the
distribution of fitness effects across these genes
[see (27)]. The actual prevalence of variants within
these genes, as a function of age, is shown for
(10, 15) (pentagons, VAF limit of detection ≈ 0.1%)
and (11) (triangles, VAF limit of detection ≈ 2%).
Error bars represent sampling noise.
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cases. It is also possible that the fitness effect
of variants themselves changes over time, for
example, owing to a slow but steady loss or
gain of epigenetic marks due to mutations in
epigenetic regulators (39, 40). Changes in bone
marrow environment driven by aging (41, 42),
chemotherapy (11, 26, 35, 43), acute infection
(44, 45), and inflammation (46) could all shape
the fitness effects of some variants. Indeed,
specific variants (e.g., PPM1D, TP53, CHEK2,
and ASXL1) are known to be strongly influenced
by external factors (26, 35, 47). Taken togeth-
er, however, the data from healthy individuals
over a broad range of ages are quantitatively
consistent with cell-intrinsic fitness differences
playing a major role in shaping the variation
in HSC clone sizes.
Although it might seem surprising that a

simple model captures many quantitative as-
pects of CH data, more complex scenarios,
including spatially partitioned niches, yield
the same effective model for the multiyear de-
velopment of CH; although in these scenar-
ios, N and t have more complex meanings
[see (27)]. These include models with HSCs
switching between active and quiescent states
and models with progenitors occasionally re-
verting to HSCs. But there are important ob-
servations that the model cannot fully explain,
including a considerably broader than ex-
pected distribution in the number of variants
observed in different individuals, although this
could be attributed to variations in muta-
tion rates across individuals or environment-
specific effects. Distinguishing between these
scenarios and teasing apart the relative con-
tributions of cell-intrinsic versus cell-extrinsic
influences on cellular fitness will likely require
longitudinal data and is an important area for
future work.

In HSCs, fitness dominates drift

The relative roles of mutation, drift, and selec-
tion in shaping the somatic mutational diver-
sity observed in human tissues has been the
subject of much recent debate, especially re-
garding the conflicting interpretations from
the ratio of nonsynonymous to synonymous
mutations (dN/dS) (1, 5, 48) and clone size
statistics (32, 49, 50). In blood, the two mea-
sures are in quantitative agreement; nonsyn-
onymous variants are under strong positive
selection, and most synonymous variants fluc-
tuate by means of neutral drift.
Our inference of the large HSC population

size (Nt ≈ 100,000 years) has an important
interpretation: On average, it would take
100,000 years for a variant to reach VAFs of
50% by drift alone and >2000 years to be de-
tectable by standard sequencing (VAF > 1%).
Therefore, the vast majority of CH variants
reaching VAFs >0.1% over a human life span
likely do so because of positive selection. How-
ever, this is not to say that variants with VAFs

<0.1% are not potentially pathogenic. Indeed,
most highly fit variants exist at low VAFs sim-
ply because not enough time has yet passed
for them to expand, although they are less
likely to acquire subsequent driver mutations
while they are at low VAFs.

More than 2500 variants confer moderate to
high fitness

By considering the VAF spectrum across 10 of
the most commonly mutated CH genes, we
have inferred that mutations conferring fit-
ness effects s > 4% per year occur at a rate of
≈4 × 10−6 per year [see (27)]. Given that the
average site-specific mutation rate in HSCs is
1.6 × 10−9 per year [see (27)], this implies that
there are ≥2500 variants within these genes
conferring moderate to high selective advan-
tages. Our framework, in combination with
broader coverage sequencing outside of known
hotspot regions, could facilitate the discovery of
these preleukemic drivers. However, targeting
specific preleukemic clones may be clinically
challenging, especially because the targeted
therapymay alter the clonal dynamics of other
variants. Although there is direct evidence from
longitudinal data (18) and indirect evidence
from age-prevalence patterns [see (27)] that
variants at many of these moderate- and
high-fitness sites expand at a roughly con-
stant rate, other variants, notably JAK2 V617F
(Val617→ Phe), might exhibit more complex
dynamics given the small exponential growth
rates observed in longitudinal data (51). It
is likely that specific mutations achieve their
selective advantages in different ways. Some
will simply cause a bias toward self-renewal
(34, 52), whereas others may cause a bias as
well as an increase in the intrinsic cell division
rate. Distinguishing between these scenar-
ios will require important future functional
studies.
The variants commonly observed in CH are

not necessarily the most fit but are both suffi-
ciently fit and sufficiently frequently mutated.
To reveal variants that are infrequently mu-
tated yet potentially highly fit, we considered
all variants in DNMT3A, TET2, ASXL1, and
TP53 that were detected at least twice across
all nine studies and estimated their fitness ef-
fects by determining what fitness effect would
be needed to produce the number of observed
variants [see (27)]. Although the lack of data at
infrequently mutated sites and the crudeness
of this counting method necessarily lead to
large uncertainties, there appear to be at least
some highly fit yet infrequently mutated var-
iants which, although individually rare, could
be collectively common [see (27)]. We note
that the high-fitness variants identified in
TP53 are strongly enriched for missense var-
iants in the DNA binding domain (figs. S24
and S25), in agreement with recent functional
and clinical data (53).

Given the average site-specificmutation rate
of 1.6 × 10−9 per year (table S4), a comprehen-
sivemap between variant and fitness effect for
all sites that confer a selective advantage large
enough to expand substantially over a human
life span (s > 4%) could be achieved with the
current sample size by increasing sequencing
sensitivity to detect variants at VAFs >0.04%
(fig. S26B). However, because sites can mu-
tate at rates as low as m ~ 10−10 per year (table
S4), to quantify all variants, even rare ones,
would require both a 6-fold increase in sam-
ple size as well as sequencing sensitivities as
low as 0.01% VAF [see (27)]. Nonetheless, even
with small study sizes, there are major ad-
vantages to being sensitive to very low VAFs
(10, 12, 15), particularly in relation to synony-
mous variants, which, when grouped together,
provide important information on Nt and
genetic hitchhikers (Fig. 1E).
The near absence of variants in known AML

drivers, such as FLT3 and NPM1, across the
nine studies suggests that mutations in these
genes do not confer an unconditional selective
advantage to HSCs, consistent with studies in
mice and humans showing that they are late
occurring and possibly cooperating mutations
necessary for transformation to AML (20, 23).

Future directions

CH has associated risks with cardiovascular
disease (7, 54) and progression to blood can-
cers (7, 8, 14, 18) and consequences in the
study of circulating tumor DNA (55, 56), aplas-
tic anemia (57), response to chemotherapies
(58, 59), and bonemarrow transplant (43, 60, 61).
A major challenge is to develop a predictive
understanding of how variants and their VAFs
affect disease risk. Recent studies show that
both gene identity and VAF are predictive of
progression to AML (14, 18). The framework
presented here provides a rational basis for
quantifying the fitness effects of these variants
and understanding VAF variations. Using this
framework, we demonstrate that fitness esti-
mates can be used to stratify AML risk. Be-
cause higher VAFs are strong predictors of
AML development (14, 18) and fitter variants
are more likely to reach higher VAFs, it is per-
haps not surprising that high-fitness variants
are able to stratify AML risk. However, fitness
predicts which variants are likely to reach high
VAF and thus ought to have increased predic-
tive power. Combining this framework with
studies that longitudinally track individuals
over time will shed light on how these initiat-
ing mutations acquire further mutations that
drive overt disease. More sensitive sequencing
techniques, broader sampling of the genome
(e.g., regulatory regions), and the study of en-
vironmental factors that alter the fitness of
mutations will improve our quantitative under-
standing of native human hematopoiesis and
accelerate the development of risk predictors.
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function of cellular selection and the age at which the mutation originated.
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